
Interfacing HTCondor-CE with OpenStack1

B. Bockelman1, J. Caballero Bejar2, J. Hover 22
1 University of Nebraska-Lincoln, Lincoln, NE 68588, USA3
2 Brookhaven National Laboratory, PO BOX 5000 Upton, NY 11973, USA4

E-mail: bbockelm@cse.unl.edu, jcaballero@bnl.gov, jhover@bnl.gov5

Abstract. Over the past few years, Grid Computing technologies have reached a high level of6

maturity. One key aspect of this success has been the development and adoption of newer7

Compute Elements to interface the external Grid users with local batch systems. These8

new Compute Elements allow for better handling of jobs requirements and a more precise9

management of diverse local resources.10

However, despite this level of maturity, the Grid Computing world is lacking diversity in11

local execution platforms. As Grid Computing technologies have historically been driven by12

the needs of the High Energy Physics community, most resource providers run the platform13

(operating system version and architecture) that best suits the needs of their particular users.14

In parallel, the development of virtualization and cloud technologies has accelerated recently,15

making available a variety of solutions, both commercial and academic, proprietary and open16

source. Virtualization facilitates performing computational tasks on platforms not available at17

most computing sites.18

This work attempts to join the technologies, allowing users to interact with computing sites19

through one of the standard Computing Elements, HTCondor-CE, but running their jobs within20

VMs on a local cloud platform, OpenStack, when needed.21

The system will re-route, in a transparent way, end user jobs into dynamically-launched VM22

worker nodes when they have requirements that cannot be satisfied by the static local batch23

system nodes. Also, once the automated mechanisms are in place, it becomes straightforward24

to allow an end user to invoke a custom Virtual Machine at the site. This will allow cloud25

resources to be used without requiring the user to establish a separate account. Both scenarios26

are described in this work.27

1. Introduction28

In parallel to the evolution of the Grid Computing technologies, a pletora of virtualization tools29

and techniques have been developed, both in the industry and academia worlds. The Grid30

Computing has reached a high level of maturity on certain aspects, but it lacks some flexibility31

in others. In particular, the type of flexibility that those virtualization tools can offer. For32

historical reasons the Grid Computing technology has evolved around the needs of the High33

Energy Physics (HEP) community, which has a very limited set of contrains, but those are in34

fact almost unavoidable. One example of these contrains is the need for a specific Linux platform35

to be deployed on the resources part of the HEP-oriented Grid infrastructre.36

37

This scenario is highly efficient for the HEP experiments, but may present a barrier for other38

scientific communities.39

40

On the another hand, many scientific and academia facilities offer to their employees -or41

even to external scientist-, the ability to use virtualization platforms. Several of these platforms42

have become very mature products over the past years ADD REFERENCES HERE TO43

OPENSTACK AND OPENNEBULA, FOR EXAMPLE44

The usage of these virtualized resources eliminates the contrains in the classic Grid45

infrastructure, but forces the users to learn how to use them, including getting the client tools46

and ID accounts.47

48

The goal of this work is to bring both worlds, the Grid Computing and the virtualization,49

closer to each other. We study how to allow users to submit their grid jobs to a standard50

Compute Element -the HTCondor-CE in this work-, expressing platform requirements that do51

not necesarily fit the classical HEP-oriented environment. Also, we present a mechanism to let52

users to interact with a virtualization cluster without requiring special knowledge, install clients,53

or request authentication credentials.54

1.1. Prototype setup55

56

The setup for this prototype was simple. All grid identities where mapped at the CE as a57

single UNIX account, which also corresponded to the unique OpenStack tenant. The backend58

batch queue was also HTCondor. The VM images used in OpenStack had an HTCondor startd59

preconfigured to join the mentioned backup HTCondor pool. These startd daemons were also60

preconfigured to shut down after the first job finished, in order to prevent them from picking61

more than one job.62

Also, job submission was done one by one.63

The technical specifications of the OpenStack cluster used for this prototype are as listed64

• OpenStack instance: Icehouse.65

• 120 compute nodes (16 cores, 32 GM RAM, 2 to 5 TB disks).66

• 200 TB Swift (Amazon S3-equivalent) object store.67

• EC2 API enabled.68

The version of HTCondor was 8.4.8.69

2. Prototype description70

71

In order to allow the HTCondor-CE to dedice when jobs need to be executed on a VM server72

in OpenStack instead of any of nodes in the backend batch system, we make use of one feature73

included in the CE: the JobRouter hooks MAYBE ADD REFERENCE HERE74

The Job Router is, by definition, ad add-on that transform jobs from one type to another75

according to a configurable policy. The Job Router hooks are arbitrary code that can be invoked76

at some points during the job life cycle.77

?? HOW DO I ADD A CAPTION TO A MINIPAGE OTHER THAN FIGURE78

???79

80

JOB ROUTER HOOK KEYWORD = NOVA

NOVA HOOK TRANSLATE JOB = /usr/share/virtualgridsite/nova hook translate job
NOVA HOOK UPDATE JOB INFO = /usr/libexec/nova hook update job info
NOVA HOOK JOB EXIT = /usr/libexec/nova hook job exit
NOVA HOOK JOB CLEANUP = /usr/libexec/nova hook cleanup job

81

2.1. Case 1: elastic expansion82

83

The first scenario allows running user’s job on an OpenStack server when the job’s84

requirements do not match the characteristics of the nodes in the backend batch system. A85

typical case is when user’s job requires and older version of the operative system, or a newer86

one. Job’s requirements are listed in Table 187

job classad description
+opsys Type of the OS. Example: LINUX
+opsysname Name of OS. Example: CentOS
+opsysmajorversion Version of the OS. Example: 7
+maxMemory Amount of RAM memory needed.
+disk Hard disk size
+xcount Number of cores

Table 1: Job’s classad

88

The process is shown in 1. The HTCondor-CE’s TRANSLATE hook compares the jobs89

requirements with a set of configuration files compiling the entire list of host profiles available,90

both in the backend batch system and VM images ready to be used in OpenStack. As a result of91

that comparison, when it decides a new VM server is needed to run the job, it requests directly92

booting it in OpenStack. As mentioned, the VMs are prepared to initialize an HTCondor’s93

startd daemon and join the backend pool. Once the VM booting process has finished, the94

TRANSLATE hook finalizes and the source job gets routed to the backend pool, with the95

guarantee that there is now a host that can run it. It also added a new ad-hoc classad to the96

job with the name assigned to the VM server.97

98

The job execution finalization triggers a call to the CLEANUP hook. This one will noticed99

the mentioned custom classad, so it can proceed with the termination of the VM server.100

2.2. Case 2: interactive usage101

In this case, the user knows there is an OpenStack cluster behind the CE, and she actually wants102

to boot a VM server to login and work interactively. There is no payload to be executed in this103

case.104

105

This request for an interactive VM is expressed by adding a special job classad:106

+virtualgridsite interactive vm = true107

108

As can be seen in Figure ??fig:interactive), when the TRANSLATE hook detects that job109

classad, it transforms the job in place -so it is not routed into any backend batch queue-, and110

it is converted into an EC2 job ?? MAYBE ADD HERE A REFERENCE TO THE111

CONDOR DOC ON EC2 ??112

This works because, as mentioned, the OpenStack infrastructure has the EC2 API enabled. ??113

REFERENCE TO THE SECTION WHERE THAT WAS MENTIONED ??114

115

In this scenario, it is the routed job, now converted into an EC2 job, the one in charge of116

requesting the VM instantiation in OpenStack. Once that step is completed, the user can read117

the public IP of that new VM server, and log into it. This IP is available because it is written118

as a job classad that is set to be mirrored back with the following set119

Figure 1: Sequence diagram for the elastic case

Figure 2: Sequence diagram for the interactive usage case

120

NOVA ATTRS TO COPY = EC2ElasticIP121

Once the user does not have a need for the VM, can issue a condor rm command, which will122

make the job to be completed. Once again, that event will be captured by the CLEANUP hook,123

which will terminate the VM server.124

2.3. Custom virtual machine image125

126

Users can provide the VM image they need themselves. This is done by passing the URL127

with the image as a job classad:128

+virtualgridsite url = <URL with the image >129

As can be seen in Figure 3, the only difference with respect the previous cases is that the130

new VM image is uploaded into Glance REFERENCE HERE TO GLANCE when needed.131

This image is uploaded with an unique name, created as a combination of the URL hash and its132

timestamp. This way it becomes trivial to determine whether the requested image has already133

being uploaded or not.134

(a) elastic case (b) interactive usage

Figure 3: Sequence diagrams when using user’s custom image

3. Security135

136

As the configuration files, as well the OpenStack credentials files, are placed on the same CE137

host, it is important to prevent the user’s jobs from running on that host. This is prevented by138

adding the following setup.139

140

START LOCAL UNIVERSE = False
START SCHEDULER UNIVERSE = $(START LOCAL UNIVERSE)141

4. Problems found142

143

Several limitations were found during this investigation. Some of these limitations are144

currently being fixed in the HTCondor source code. Deeper understanding of the others may145

lead to improvements in the overall system.146

147

If the communication process with OpenStack by the TRANSLATE hook fails, there is148

currently a clean way to terminate the job, or to put it in a HOLD state. Instead, the Job149

Router tries again, after 30 seconds, in an virtually infinite loop.150

151

For the mirroring of the classads from the routed job back to the source job, it is required152

the UPDATE hook to send the whole classad to the stdout. It has been found that actions fail153

due hidden bugs in the code.154

155

it is not easy to manage a job when its requirements not only can not be satisfied by any156

node in the backend batch system, but also by any currently available VM image. The solution157

implemented, as the time being, is to detect that case early in the job cycle management, and158

create a dedicated route for it. To detect this case, we leverage a feature that allows for the partial159

creation of the routing table by code. This code reads the configuration files with all avaible160

images types, and builds the logic to identify jobs that do not meet any of those criteria. When161

this ocurrs, the job is transform in place -and therefore not routed to the backend batch queue-,162

with an extra classad (set noroute=True) to prevent it from being considered again for routing.163

This let the job in permanent IDLE status, candidate for removal if also a periodic remove164

expression is added to its classad definition.165

166

JOB ROUTER ENTRIES CMD =
/usr/lib/python2.6/site-packages/virtualgridsite/routes.py

JOB ROUTER ENTRIES REFRESH = 600
167

168

[Name = ”No route”;
EditJobInPlace = true;
set noreroute = ”True”;
Requirements = TARGET.noreroute is undefined && <node requirements>;
set PeriodicRemove = (JobStatus == 1 && (time() - EnteredCurrentStatus) > 10);
TargetUniverse = 5
]

169

170

Another problem found is related to the present configuration after installation rather than171

code design. The HTCondor-CE only allows, by default, jobs being routed in certain ways172

-more exactly, to certain Job Universes-. It is easy to workaround this constrain by overriden173

the right configuration variable (JOB ROUTER SOURCE SOURCE JOB CONSTRAINT)174

removing that specific constrain.175

176

JOB ROUTER SOURCE JOB CONSTRAINT =
(target.x509userproxysubject =!= UNDEFINED) &&
(target.x509UserProxyExpiration =!= UNDEFINED) &&
(time() < target.x509UserProxyExpiration)

177

5. Future work178

This work can be improved in several ways.179

180

First, it should be straigthforward to expand the same concept to other platforms and not181

only OpenStack. For example, to AWS REFERENCE HERE TO EC2 ???, or remote182

clusters using the BOSCO-CE mechanism REFERENCE TO BOSCO-CE.183

184

The presetup in the VM images should be avoided, allowing the HTCondor startd to join185

any arbitrary pool.186

187

The job lifecycle management allows for improvements. One possibility is to allow the same188

VM server to run more than one job, increasing the efficiency of the whole system. Another189

option is to reuse the presented mechanism to elastically expand the size of the local backend190

batch queue when the jobs waiting time passes some thredshold.191

192

Having more than just one OpenStack user (tenant) is highly recommendable to create policies193

on user quotas, fair shares mechanisms, accounting and billing.194

195

Removing the need for GSI authentication to submit jobs to the HTCondor-CE is under196

consideration.197

198

It is also being studied a change in the architectural design to prevent the hooks code from199

interacting themselves with OpenStack. Instead, an independent daemon would listen to the200

hooks requests and execute the corresponding steps. This will prevent from the need to read201

the configuration files for each job, and also allows for having a single process which holds the202

state of the entire system, including all jobs, which will facilitate implemented more complex203

and smarter policies.204

Acknowledgments205

The authors would like to thank the HTCondor developers for their constant support.206

References207

[1] Thain D, Tannenbaum T and Livny M 2005 Distributed Computing in Practice: The Condor Experience208

Concurrency and Computation: Practice and Experience 17, No. 2-4 323-56209

[2] Bockelman B, Cartwright T, Frey J, Fajardo E M, Lin B, Selmeci M, Tannenbaum T and Zvada M 2015210

Commissioning the HTCondor-CE for the Open Science Grid Journal of Physics: Conference Series 664,211

No. 6 062003212

213

Notice: This manuscript has been authored by employees of Brookhaven Science Associates,214

LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The215

publisher by accepting the manuscript for publication acknowledges that the United States216

Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or217

reproduce the published form of this manuscript, or allow others to do so, for United States218

Government purposes.219

